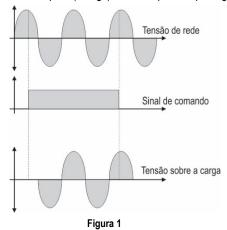


Relé de Estado Sólido – SSR

TRIFÁSICO 40, 80 E 90 A – MANUAL DE INSTRUÇÕES – V1.0x H

1. PRINCIPAIS CARACTERÍSTICAS

Os Relés de Estado Sólido são dispositivos eletrônicos usados no acionamento de cargas resistivas e indutivas com inúmeras vantagens sobre os convencionais relés eletromecânicos.


Um sinal de comando (INPUT) determina o acionamento da carga conectada os terminais de saída (OUTPUT) sem ruído elétrico, faiscamento ou desgaste mecânico.

Possuem um circuito proteção do tiristor interno (Snubber) e um sistema Zero Crossing, que liga em 0 Volt e desliga em 0 Ampére. Além disso, apresentam isolação ótica entre INPUT e OUTPUT e um sinalizador luminoso (LED) que indica o estado ligado ou desligado.

2. FUNCIONAMENTO

Ao receber um sinal de comando em seus terminais de entrada (input), o SSR conduz (liga) e alimenta a carga. A condução acontece efetivamente da próxima vez que a tensão de rede passar por 0. O mesmo acontece durante o desligamento.

O sinal de comando é retirado, porém o SSR somente bloqueia (desliga) durante a próxima passagem por 0.

Isso implica em atrasos nunca superiores a 8,3 milissegundos entre o instante de disparo do comando LIGA/DESLIGA e a efetiva alimentação ou remoção da alimentação da carga.

O fato de ligar e desligar a alimentação da carga durante um cruzamento por 0 traz vantagens importantes para a instalação. Praticamente não são geradas interferências elétricas na instalação e o SSR não é submetido a condições severas de chaveamento.

Este dispositivo NÃO deve ser utilizado para comandar cargas elétricas em instalações com tensão DC.

NOVUS PRODUTOS ELETRÔNICOS LTDA.

3. CONEXÕES ELÉTRICAS

São necessárias 2 ligações: Sinal de comando e ligação com a carga. Na ligação com a carga, deve-se utilizar um fusível ultrarrápido para proteger a instalação.

Terminais bem fixados e fios adequados ajudam a melhorar a eficiência da instalação.

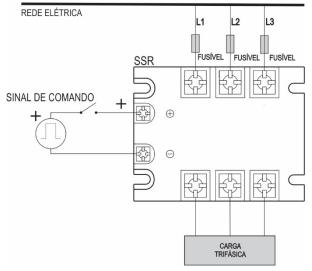
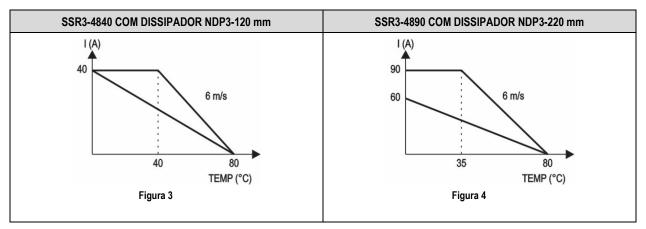


Figura 2

4. DISSIPAÇÃO DE CALOR

Com a corrente de carga circulando, gera-se calor sobre o SSR. Para evitar a queima por sobre aquecimento, esse calor deve ser retirado do SSR. Os valores nominais de corrente de carga (IL) definidos para cada modelo de SSR consideram o uso de um dissipador adequadamente calculado. Sem a utilização deste dissipador, a corrente de carga máxima possível cai enormemente.

O usuário pode calcular o dissipador adequado ao seu processo ou utilizar o modelo indicado pela NOVUS.


Nestes níveis de corrente, além do dissipador, a ventilação forçada também é fundamental para um desempenho máximo.

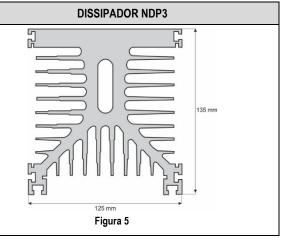
Entre o SSR e o dissipador, deve-se obrigatoriamente utilizar uma pasta térmica, fundamental para a perfeita transferência de calor. O conjunto SSR + dissipador deve ser fixado na posição vertical, de modo a facilitar a troca de calor com o ambiente.

Notas

- 1. O uso do Acoplador Térmico (Thermal Pad) que acompanha o SSR é opcional. É recomendado para instalações onde a superfície do dissipador que receberá o SSR não é perfeitamente lisa ou regular.
- Certifique-se de que os parafusos nos terminais do SSR estão adequadamente apertados. Problemas de contato nesses pontos influenciam na operação de todo o sistema de potência da instalação.
- 3. Ensaios de validação prévios são importantes para identificar falhas na instalação, principalmente para identificar pontos de aquecimento exagerados.

Os gráficos abaixo mostram a capacidade de condução de corrente do SSR em função da temperatura ambiente quando montado sobre o dissipador indicado e utilizando ou não o ventilador:

Os modelos de dissipadores NOVUS indicados são:


SSR3-4840: NDP3-120 mm / (P/N 8825000100)
Rthha = 0,52 °C/W

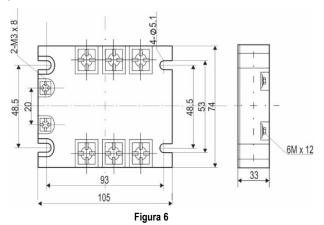
Rthha = 0,175 °C/W (com ventilador 6 m/s)

• SSR3-4890: NDP3-220 mm / (P/N 8825000220)

Rthha = 0.35 °C/W

Rthha = 0,125 °C/W (com ventilador 6 m/s)

5. ESPECIFICAÇÕES


PARÂMETRO	UNIDADE	SSR3-4840	SSR3-4880	SSR3-4890*
Corrente de carga (IL)	А	40	80	90
Tensão de chaveamento	Vca	40 a 530	40 a 530	40 a 530
Queda de tensão (Vssr)	V	< 1,5	< 1,5	< 1,5
Corrente de fuga	mA	<1	<1	<1
Frequência	Hz	47 a 63	47 a 63	47 a 63
dv/dt	V/µs	300	300	300
Tensão de controle	Vcc	4 a 32	4 a 32	4 a 32
Corrente de controle	mA	15 a 20	15 a 20	15 a 20
Tempo comutação	ms	< 10	< 10	< 10
Disparo		Cruzamento por zero	Cruzamento por zero	Cruzamento por zero
Isolamento	V	> 2000	> 2000	> 2000
Temperatura carcaça	°C	-40 a 80	-40 a 80	-40 a 80
Peso	g	397	430	431
Indicador de status		LED	LED	LED
Certificações	CE e UL			CE
Máxima corrente de surto	5x IL, com duração máxima de 10 ms.			
Torque dos parafusos	3-5 nm.			

^{*} Modelo sem certificação UL.

Tabela 1

6. DIMENSÕES

O SSR possui as seguintes especificações:

NOVUS PRODUTOS ELETRÔNICOS LTDA.

7. GARANTIA

As condições de garantia se encontram em nosso website www.novus.com.br/garantia.